A strong law of large numbers for branching processes: almost sure spine events
نویسندگان
چکیده
منابع مشابه
A strong law of large numbers for branching processes: almost sure spine events
We demonstrate a novel strong law of large numbers for branching processes, with a simple proof via measure-theoretic manipulations and spine theory. Roughly speaking, any sequence of events that eventually occurs almost surely for the spine entails the almost sure convergence of a certain sum over particles in the population.
متن کاملA Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملStrong Law of Large Numbers for Branching Diffusions
Let X be the branching particle diffusion corresponding to the operator Lu + β(u2 − u) on D ⊆ Rd (where β ≥ 0 and β 6≡ 0). Let λc denote the generalized principal eigenvalue for the operator L + β on D and assume that it is finite. When λc > 0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost surely in the vague topology ...
متن کاملStrong law of large numbers for fragmentation processes
In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1 ≥ η > ...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2014
ISSN: 1083-589X
DOI: 10.1214/ecp.v19-2641