A strong law of large numbers for branching processes: almost sure spine events

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A strong law of large numbers for branching processes: almost sure spine events

We demonstrate a novel strong law of large numbers for branching processes, with a simple proof via measure-theoretic manipulations and spine theory. Roughly speaking, any sequence of events that eventually occurs almost surely for the spine entails the almost sure convergence of a certain sum over particles in the population.

متن کامل

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

Strong Law of Large Numbers for Branching Diffusions

Let X be the branching particle diffusion corresponding to the operator Lu + β(u2 − u) on D ⊆ Rd (where β ≥ 0 and β 6≡ 0). Let λc denote the generalized principal eigenvalue for the operator L + β on D and assume that it is finite. When λc > 0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost surely in the vague topology ...

متن کامل

Strong law of large numbers for fragmentation processes

In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1 ≥ η > ...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2014

ISSN: 1083-589X

DOI: 10.1214/ecp.v19-2641